Standard Model Lagrangian:
Traditional vs. Condensed Notation
Same physics, two presentations. This is about bridging traditional notation with modern optimization & teaching tools (Ceasar Science).
The Traditional "Monster" Equation
The complete Standard Model Lagrangian in its fully expanded form:
Why This Matters for Learning
While mathematically rigorous, this presentation:
- Repeats identical structures (e.g., across 3 fermion generations)
- Buries symmetry patterns beneath many explicit terms
- Overwhelms beginners with visual complexity
- Makes conceptual connections harder to see on first pass
It’s not “bad” — it’s the canonical, complete view. But it’s not the easiest way to learn.
Traditional Split Form
The Lagrangian divided into conceptual components:
Gauge Fields
\[ \mathcal{L}_{\text{gauge}} = -\tfrac{1}{4} G^a_{\mu\nu}G^{a\mu\nu} \;+\; -\tfrac{1}{4} W^i_{\mu\nu}W^{i\mu\nu} \;+\; -\tfrac{1}{4} B_{\mu\nu}B^{\mu\nu} \]Higgs Sector
\[ \mathcal{L}_{\text{Higgs}} = (D_\mu\phi)^\dagger(D^\mu\phi)\; -\;\mu^2\phi^\dagger\phi\;+\;\lambda(\phi^\dagger\phi)^2 \]Fermions & Yukawa
\[ \mathcal{L}_{\text{ferm}}=\sum_{\psi}\bar\psi\,i\gamma^\mu D_\mu\psi \qquad \mathcal{L}_{\text{Y}}=\sum_{f\in\{u,d,e(\!,\nu)\}} \big(\bar f_L Y_f \phi f_R + \text{h.c.}\big) \]This split helps, but still repeats many near-identical terms.
Condensed Notation (Ceasar-style)
Use indexed sets and symmetry to compress redundancy while preserving all physics:
Key Components
- \(\mathcal{F}=\{Q_L, u_R, d_R, L_L, e_R, (\nu_R?)\}\) — all fermion multiplets
- \(\mathcal{G}=\{u,d,e,(\nu)\}\times\) 3 generations — Yukawa families
- Symmetry: \(SU(3)_C \times SU(2)_L \times U(1)_Y\)
Ceasar Science Insight: Same content, reorganized for clarity and runtime efficiency.
Educational Comparison
Traditional Notation
Advantages
- Explicit for calculations
- Shows every coefficient
- Standard in literature
Disadvantages
- Visual overload
- Patterns less obvious
- Harder first contact for learners
Condensed Notation
Advantages
- Reveals structure & symmetry
- Easier conceptual mapping
- Simplifies extensions & teaching
Tradeoffs
- Must expand for detailed computations
- Less common in older papers
Pedagogical Recommendation
Start with the condensed form to teach structure, then expand to the traditional form when you’re ready to compute. This mirrors how many physicists think about the theory.
Ceasar7 — Compact vs. “Monster Mode”
Ceasar7 uses the same principle: a compact, runtime-variable master line that can be expanded into a huge explicit sum (the “monster”).
Compact (Runtime-Variable) Master Line
\[ \boxed{ \mathcal{L}_7(t) = \sum_{h\in\mathcal{H}} \sum_{p\in\mathcal{P}} w_{h,p}\,\mathcal{K}\!\big(E(t);h,p\big) \;+\; \sum_{s\in\mathcal{S}} \alpha_s\,\mathrm{Shock}_s(t) \;+\; \sum_{d\in\mathcal{D}} \beta_d\,\mathrm{Decay}_d(t) } \]Index sets: \(\mathcal{H}\)=harmonics, \(\mathcal{P}\)=isolation points, \(\mathcal{S}\)=shocks, \(\mathcal{D}\)=decays (plus optional time lags, cross-harmonics, nonlinear orders).
Illustrative Explicit Expansion (“Monster Mode”)
\[ \begin{aligned} \mathcal{L}_7(t) \;=\; &\; w_{1,1}\,\mathcal{K}\!\big(E(t);H_1,P_1\big) + w_{1,2}\,\mathcal{K}\!\big(E(t);H_1,P_2\big) + w_{1,3}\,\mathcal{K}\!\big(E(t);H_1,P_3\big) \\ &+ w_{2,1}\,\mathcal{K}\!\big(E(t);H_2,P_1\big) + w_{2,2}\,\mathcal{K}\!\big(E(t);H_2,P_2\big) + w_{2,3}\,\mathcal{K}\!\big(E(t);H_2,P_3\big) \\ &+ w_{3,1}\,\mathcal{K}\!\big(E(t);H_3,P_1\big) + w_{3,2}\,\mathcal{K}\!\big(E(t);H_3,P_2\big) + w_{3,3}\,\mathcal{K}\!\big(E(t);H_3,P_3\big) \\[6pt] &+ \alpha_{1}\,\mathrm{Shock}_{S_1}(t) \;+\; \alpha_{2}\,\mathrm{Shock}_{S_2}(t) \\[6pt] &+ \beta_{1}\,\mathrm{Decay}_{D_1}(t) \;+\; \beta_{2}\,\mathrm{Decay}_{D_2}(t) \;\;. \end{aligned} \]Print-Time Reality Check
- Pages ≈ (number of terms) ÷ 50 (lines/page)
- Time ≈ pages ÷ (20–30 ppm)
Example: 1,000,000 terms ≈ 20,000 pages → ~11–17 hours of nonstop printing and ~40 reams of paper. This is why Ceasar style keeps the monster indexed and generates only what you need.
Ceasar Science: Bridging Notation & Optimization
We use the same idea to condense large theories (like the Standard Model) and to model complex systems (Ceasar7). The runtime-variable, indexed form keeps equations teachable and fast, while a full expansion (“monster mode”) is always reproducible on demand.
Standard Model (Ceasar1 Condensed) — IPFS Provenance
- Manifest (v1–v5):
ipfs://bafkreiccyg6lktclnd2yeyljudpkb6iauc5jjhveyy4yq5u6lnn62cc5yu
- Optimized v5 (O-CR1):
ipfs://bafkreif4pwonngyx44zv4yusbs4i37gkno3x24ryek4qeoyyzuobrpkjfu
Ceasar7 — Monster Pack (Archive & Reproducibility)
Seed ➜ Sample ➜ Expander. Proof that Ceasar7’s full “monster mode” can be reconstructed deterministically.
⬇️ Download the whole pack (ZIP)
- Monster Seed (JSON):
ipfs://bafkreia5cves7ehhgspcwx53jggqjtfpk4v3sr5bqznq3v7cdtlsvr5pgu
- Monster Sample (TXT):
ipfs://bafkreic2cstdmizvaqvxubfpplui726droq7kosiujvsptfq4n3dvaz7ba
- Expander Script (PY):
ipfs://bafkreicsplvpbl57kyzjuxq3ubl6rs3uamb7zdzfwhb4ce7ajoafqyxy54
Tip: use an IPFS gateway (e.g. https://ipfs.io/ipfs/<CID>
) if your platform doesn’t resolve ipfs://
links.
No comments:
Post a Comment